1,390 research outputs found

    Extreme-Point-based Heuristics for the Three-Dimensional Bin Packing problem

    Get PDF
    One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate definition of the points at which to place the items inside the bins, because the performance of exact and heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional container. The extreme point rule is independent from the particular packing problem addressed and can handle additional constraints, such as fixing the position of the items. The new extreme point rule is also used to derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed for the proble

    An Algorithmic Study of Manufacturing Paperclips and Other Folded Structures

    Get PDF
    We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter's ruler) can be straightened, a problem that was open for several years and has only recently been solved in the affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite different results. In particular, we study the variant of the carpenter's ruler problem in which there is a restriction that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time. However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.Comment: 28 pages, 14 figures, Latex, to appear in Computational Geometry - Theory and Application

    Dynamic Composite Data Physicalization Using Wheeled Micro-Robots

    Get PDF
    This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work

    Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    Full text link
    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communication, local sensors, and a constant-sized memory. We first give algorithms for the single-door case (i.e., k=1), analyzing the algorithms both theoretically and experimentally. We prove that our algorithms have optimal makespan 2A-1, where A is the area of R. We next give an algorithm for the multi-door case (k>1), based on a wall-following version of the leader-follower strategy. We prove that our strategy is O(log(k+1))-competitive, and that this bound is tight for our strategy and other related strategies.Comment: 17 pages, 4 figures, Latex, to appear in Workshop on Algorithmic Foundations of Robotics, 200

    The Geometric Maximum Traveling Salesman Problem

    Full text link
    We consider the traveling salesman problem when the cities are points in R^d for some fixed d and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of maximum length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time O(n^{f-2} log n), where f is the number of facets of the polyhedron determining the polyhedral norm. Thus for example we have O(n^2 log n) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a minimum length tour in each case is NP-hard. Our approach can be extended to the more general case of quasi-norms with not necessarily symmetric unit ball, where we get a complexity of O(n^{2f-2} log n). For the special case of two-dimensional metrics with f=4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with O(n) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Omega(n \log n) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms. Complementing the results on simplicity for polyhedral norms, we prove that for the case of Euclidean distances in R^d for d>2, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.Comment: 24 pages, 6 figures; revised to appear in Journal of the ACM. (clarified some minor points, fixed typos
    • …
    corecore